A STUDY ON SOME NEW RESULTS ARISING FROM (p,q)-CALCULUS

UGUR DURAN¹, MEHMET ACIKGOZ² AND SERKAN ARACI³

ABSTRACT. This paper includes some new investigations and results for post quantum calculus, denoted by (p,q)-calculus. A chain rule for (p,q)-derivative is given. Also, a new (p,q)-analogue of the exponential function is introduced and its properties including the addition property for (p,q)-exponential functions are investigated. Several useful results involving (p,q)-binomial coefficients and (p,q)-antiderivative are discovered. At the final part of this paper, (p,q)-analogue of some elementary functions including trigonometric functions and hyperbolic functions are considered and some properties and relations among them are analyzed extensively.

Keywords: q-calculus, (p, q)-calculus, exponential functions, trigonometric functions, hyperbolic functions.

AMS Subject Classification: 05A30, 33A10.

1. INTRODUCTION

As q-calculus including q-numbers with one base q is dealt with by some scientists since XIX century, (p, q)-calculus including (p, q)-number with independent two variables p and q are firstly considered circa the same time (1991) and independently by [7], et al. [5], [28], et al. [4]. [7] introduced the (p,q)-number to generalize or unify several forms of q-oscillator algebras well-known in the physics literature related to the representation theory of single parameter quantum algebras. [5] introduced (p,q)-number so that (p,q)-algebra can be derived from qcalculus by a Bargmann differential realization of the creation and annihilation operator, the Bose representation of those operators was derived, and (p,q)-Harmonic oscillator was constructed. White [28] introduced (p,q) -number in mathematical literature in order to obtain (p,q)-Stirling number which is the generating function of the joint distribution of pairs of statistics. [4] introduced (p,q)-number to investigate Fibonacci oscillators. Thereby, several physical and mathematical problems lead to the necessity of (p,q)-calculus. Based on the aforementioned papers, many mathematicians and physicists have developed the (p,q)-calculus in many different research areas since 1991. For instance, [6] introduced (p,q)-hypergeometric functions and studied the relations among the basic hypergeometric functions, q-hypergeometric functions, and (p,q)-hypergeometric functions in 1994. [17] considered a more general (p,q)-hypergeometric

¹Department of the Basic Concepts of Engineering, Faculty of Engineering and Natural Sciences Iskenderun Technical University, Hatay, Turkey

²Department of Mathematics, Faculty of Arts and Science, University of Gaziantep, Gaziantep, Turkey

³Department of Economics, Faculty of Economics, Administrative and Social Science, Hasan Kalyoncu University, Gaziantep, Turkey

e-mail: duran.ugur@yahoo.com, acikgoz@gantep.edu.tr, mtsrkn@hotmail.com

Manuscript received November 2019.

series as well as Burban's (p, q)-hypergeometric series in [6] and he derived some related preliminary results in 1997. In 2005, [16] gave a method to embed the q-series into a (p, q)-series, discovered some results corresponding (p, q)-extensions of the known q-identities and they also studied about (p, q)-hypergeometric series, based on the (p, q)-numbers. In 2008, [10] developed the (p, q)-extension of the binomial coefficients and also established some properties parallel to those of the ordinary and q-binomial coefficients. [25] investigated some properties of the (p, q)-derivative and the (p, q)-integration and presented two appropriate polynomial bases for the (p, q)-derivative, and then derived various properties of these bases in the year 2013. As an application, he gave two (p, q)-Taylor formulas for polynomials. Furthermore, the fundamental theorem of (p, q)-calculus and the formula of (p, q)-integration by part were given. In the year 2015, [26] introduced a new generalization of the Gamma and the Beta functions, calling as (p, q)-Gamma and (p, q)-Beta functions and developed some of their properties reduced to the known results as special cases.

Recently, (p, q)-integers have been introduced into classical linear positive operators to construct new approximation processes. A sequence of (p, q)-analogue of Bernstein operators was first introduced by [20]. For further developments, one can also refer to [1], [21], [22], [23].

The (p,q)-analogues of Bernoulli polynomials, Euler polynomials, and Genocchi polynomials were described by et al. [11] in early 2016 and the (p,q)-analogues of known earlier formulae were obtained, and relations between the new and old polynomials were investigated by making use of the fermionic *p*-adic integral over the *p* -adic number fields. Also, in early 2016, a new class of Bernoulli, Euler and Genocchi polynomials based on the theory of (p,q)-calculus were considered by et al. [13] some of their properties including addition theorems, difference equations, derivative properties, recurrence relationships were investigated. The (p,q)-extension of main result in [8] was acquired, and further, the (p,q)-analogue of the main results given earlier by [27] was discovered in [13]. et al. [3] researched and gave some connections between the (p,q)derivative operators and divided differences in 2016. Moreover, in 2016, et al. [2] considered an extension of Haar distribution based on (p,q)-numbers. By means of this distribution, the (p,q)analogue of Volkenborn integration that is a new generalization of q-Volkenborn integration was derived. Some properties of Volkenborn integration based on (p,q)-numbers were investigated. Finally, (p,q) -Bernoulli numbers and polynomials derived from (p,q)-Volkenborn integral were constructed and also some of their properties were obtained.

We now review briefly some concepts of the (p, q)-calculus.

We begin with the following notations: \mathbb{N} denotes the set of the natural numbers, \mathbb{N}_0 denotes the set of nonnegative integers, \mathbb{R} denotes the set of real numbers, and \mathbb{C} denotes the set of complex numbers.

The twin-basic number or (p, q)-number is defined by, for any number n,

$$[n]_{p,q} := \frac{p^n - q^n}{p - q} = p^{n-1} + p^{n-2}q + \dots + pq^{n-2} + q^{n-1}$$

which is a natural generalization of the q-number such that

$$[n]_{1,q} := [n]_q = \frac{1-q^n}{1-q} = 1+q+\dots+q^{n-2}+q^{n-1},$$

Note that $[n]_{p,q} = [n]_{q,p}$.

The (p,q)-derivative of a function f with respect to x is defined by

$$D_{p,q;x}f(x) := D_{p,q}f(x) = \frac{f(px) - f(qx)}{(p-q)x} \quad (x \neq 0),$$
(1)

and $(D_{p,q}f)(0) = f'(0)$, provided that f is differentiable at 0. As with the q-derivative and the ordinary derivative, the action of applying the (p,q)-derivative of any function is a linear operator, viz., for any constants a and b,

$$D_{p,q}\left(af\left(x\right)+bg\left(x\right)\right) = aD_{p,q}f\left(x\right)+bD_{p,q}g\left(x\right)$$

The (p,q)-derivatives of product and the quotient of f(x) and g(x) are given by

$$D_{p,q}(f(x)g(x)) = g(px) D_{p,q}f(x) + f(qx) D_{p,q}g(x) = f(px) D_{p,q}g(x) + g(qx) D_{p,q}f(x),$$
(2)

$$D_{p,q}\left(\frac{f(x)}{g(x)}\right) = \frac{g(qx) D_{p,q}f(x) - f(qx) D_{p,q}g(x)}{g(px) g(qx)} = \frac{g(px) D_{p,q}f(x) - f(px) D_{p,q}g(x)}{g(px) g(qx)}.$$
 (3)

As well as the formulas (1.4) and (1.5) we may write one more representation in symmetrical form

$$D_{p,q}\left(\frac{f(x)}{g(x)}\right) = \frac{1}{2} \frac{D_{p,q}f(x)\left(g\left(px\right) + g\left(qx\right)\right) - D_{p,q}g(x)\left(f\left(px\right) + f\left(qx\right)\right)}{g\left(px\right)g\left(qx\right)}.$$
(4)

The formulas in Eqs. (1)-(4) are valid, however one of these forms may be more useful than others under special cases.

The (p,q)-Gauss Binomial formula is defined by

$$(x \oplus a)_{p,q}^{n} = \begin{cases} (x+a)(px+aq)\cdots(p^{n-2}x+aq^{n-2})(p^{n-1}x+aq^{n-1}), & \text{if } n \ge 1, \\ 1, & \text{if } n = 0, \end{cases}$$

=
$$\sum_{k=0}^{n} {n \brack k}_{p,q} p^{\binom{k}{2}} q^{\binom{n-k}{2}} x^{k} a^{n-k},$$

where the notations $\begin{bmatrix} n \\ k \end{bmatrix}_{p,q}$ and $[n]_{p,q}!$ are defined by

$$\begin{bmatrix} n \\ k \end{bmatrix}_{p,q} = \frac{[n]_{p,q}!}{[n-k]_{p,q}! \, [k]_{p,q}!}, \qquad (n \ge k) \,,$$

and

$$[n]_{p,q}! = [n]_{p,q} [n-1]_{p,q} \cdots [2]_{p,q} [1]_{p,q}, \quad (n \in \mathbb{N}).$$

The (p,q)-exponential functions, $e_{p,q}(x)$ and $E_{p,q}(x)$, are defined by

$$e_{p,q}(x) = \sum_{n=0}^{\infty} p\binom{n}{2} \frac{x^n}{[n]_{p,q}!},$$

and

$$E_{p,q}(x) = \sum_{n=0}^{\infty} q^{\binom{n}{2}} \frac{x^n}{[n]_{p,q}!}$$

which hold the basic identity

$$e_{p,q}(x)E_{p,q}(-x) = 1.$$
 (5)

The following (p,q)-derivatives hold true:

$$D_{p,q}e_{p,q}(x) = e_{p,q}(px) \text{ and } D_{p,q}E_{p,q}(x) = E_{p,q}(qx).$$
 (6)

Note that the (p, q)-derivatives of the (p, q)-exponentials are not precisely determined. However those derivatives are in the similar form of the derivatives of classical exponential functions.

A more detailed statement of above, including (p, q)-numbers, is found in [1-7, 10, 11, 13, 16, 17, 20-23, 25].

Taking here p = 1, then all notations given in this part are reduce to the notations of the usual q-calculus (for details see [9, 12, 14, 15, 18, 19, 21]).

2. Main Results

The formulas (3) and (4) can be rewritten in explicitly symmetrical form:

$$D_{p,q}(f(x)g(x)) = D_{p,q}f(x)\left(\frac{g(px) + g(qx)}{2}\right) + D_{p,q}g(x)\left(\frac{f(px) + f(qx)}{2}\right).$$
 (7)

More general form of the multiplication rule of (p,q)-derivative is presented with fixed $0 \le \alpha \le 1$,

$$D_{p,q}(f(x)g(x)) = (\alpha f(qx) + (1-\alpha)f(px))D_{p,q}g(x) + (\alpha g(px) + (1-\alpha)g(qx))D_{p,q}f(x).$$

If we choose $\alpha = 1$, $\alpha = 0$ and $\alpha = \frac{1}{2}$, we then get the formulas (3), (4) and (7), respectively. Let y = f(x) be an injective and surjective mapping. In this case, we have $x = f^{-1}(y)$ where f^{-1} is the inverse function of f. Applying (p, q)-derivative to each side of $x = f^{-1}(u)$ gives

s the inverse function of
$$f$$
. Applying (p,q) -derivative to each side of $x = f^{-1}(y)$ give

$$1 = D_{p,q}x = D_{p,q}f^{-1}(y)$$

= $\frac{f^{-1}(y(px)) - f^{-1}(y(qx))}{y(px) - y(qx)} \cdot \frac{y(px) - y(qx)}{px - qx}$
= $D_{p,q;x}f^{-1}(y(x)) \cdot D_{p,q;x}y(x)$,

thus we arrive

$$D_{p,q;x}f^{-1}(y(x)) = \frac{1}{D_{p,q;x}y}$$

which is (p,q)-extension of the usual derivative of inverse function f^{-1} .

As it has been given for q-derivative in [18], there doesn't exist a general chain rule for (p, q)derivatives. That is, if we consider the function f(u(x)), where $u = u(x) = \lambda x^{\mu}$ with λ, μ being
constants, we have a chain rule as a special case:

$$D_{p,q} [f(u(x))] = D_{p,q} [f(\lambda x^{\mu})] = \frac{f(\lambda x^{\mu} p^{\mu}) - f(\lambda x^{\mu} q^{\mu})}{x(p-q)}$$

= $\frac{f(\lambda x^{\mu} p^{\mu}) - f(\lambda x^{\mu} q^{\mu})}{\lambda x^{\mu} p^{\mu} - \lambda x^{\mu} q^{\mu}} \cdot \frac{\lambda x^{\mu} p^{\mu} - \lambda x^{\mu} q^{\mu}}{x(p-q)}$
= $\frac{f(up^{\mu}) - f(uq^{\mu})}{up^{\mu} - uq^{\mu}} \cdot \frac{u(px) - u(qx)}{x(p-q)},$

which gives

$$D_{p,q} f(u(x)) = (D_{p^{\mu},q^{\mu}} f) (u(x)) \cdot D_{p,q} u(x),$$
(8)

that is (p, q)-extension of the Eq. (5) in [18].

Conversely, if we consider the function $u(x) = x^3 + x^2$ or $u(x) = \cos x$, the quantity u(px) and u(qx) can not be derived in terms of u in a basic way, and thereby it is impossible to write a general chain rule.

As has been done for multiple q-calculus in [24], the case $D_{p,q}\varpi(x) = 0$ for any function is ϖ if and only if $\varpi(px) = \varpi(qx)$ called (p,q)-periodic function. By choosing $p = e^{\ln p}$ and $x = e^{\ln x} = e^y$ we can write $\varpi(x) = \varpi(e^y) \equiv G(y)$ and

$$\varpi\left(px\right) = G\left(y + \ln p\right)$$

Using condition of (p, q)-periodicity of F(x), we get

$$G\left(y+\ln p\right) = G\left(y+\ln q\right)$$

and if we denote $y + \ln p = z$, then we realize

$$G(z) = G\left(z + \ln \frac{q}{p}\right),$$

which implies that G(z) is a standard periodic function

$$G\left(z\right) = G\left(z+t\right),$$

with period $t = \ln \frac{q}{p} = \ln q - \ln p$.

Applying k times the derivative operator $D_{p,q}$ to $(a \ominus x)_{p,q}^n$ successively yields to the following proportion.

Proposition 2.1. Let n be a positive integer and $0 \le k \le n$, we have

$$D_{p,q}^k \frac{1}{(x \ominus a)_{p,q}^n} = (-1)^k q^{\binom{k}{2}} \frac{[n+k-1]_{p,q}!}{[n-1]_{p,q}!} \frac{1}{(q^k x \ominus a)_{p,q}^{n+k}}.$$
(9)

Similarly, we get the following result.

Proposition 2.2. Let $n \ge 1$ be an integer and $0 \le k \le n$, we have

$$D_{p,q}^{k} \frac{1}{(a \ominus x)_{p,q}^{n}} = p\binom{k}{2} \frac{[n+k-1]_{p,q}!}{[n-1]_{p,q}!} \frac{1}{(a \ominus p^{k}x)_{p,q}^{n+k}}.$$
(10)

Now, we analyze some properties of the (p, q)-exponential functions. We observe that

$$e_{\frac{1}{p},\frac{1}{q}}(x) = \sum_{n=0}^{\infty} \frac{1}{[n]_{\frac{1}{p},\frac{1}{q}}!} p^{-\binom{n}{2}} x^n = \sum_{n=0}^{\infty} \frac{1}{[n]_{p,q}!} q^{\binom{n}{2}} x^n,$$

thus, we get

$$e_{\frac{1}{p},\frac{1}{q}}(x) = E_{p,q}(x).$$
(11)

In the same way, we have

$$E_{\frac{1}{p},\frac{1}{q}}(x) = e_{p,q}(x).$$
(12)

How about the additive property of the (p, q)-exponential functions? The answer is that the (p, q)-exponential functions do not have any additive properties. Indeed,

$$e_{p,q}(x) E_{p,q}(y) = \left(\sum_{n=0}^{\infty} p^{\binom{n}{2}} \frac{x^n}{[n]_{p,q}!}\right) \left(\sum_{n=0}^{\infty} q^{\binom{n}{2}} \frac{y^n}{[n]_{p,q}!}\right)$$
$$= \sum_{n=0}^{\infty} \left(\sum_{k=0}^n {n \brack k}_{p,q} p^{\binom{k}{2}} q^{\binom{n-k}{2}} x^k y^{n-k}\right) \frac{1}{[n]_{p,q}!}$$
$$= \sum_{n=0}^{\infty} \frac{(x \oplus y)_{p,q}^n}{[n]_{p,q}!},$$
(13)

which is not any form of (p, q)-exponential functions $(e_{p,q}(x))$ and $E_{p,q}(x)$.

We define a new type of (p, q)-exponential functions as

$$\widetilde{e}_{p,q}\left(x\right) = \sum_{n=0}^{\infty} \frac{x^n}{[n]_{p,q}!}.$$
(14)

From Eqs. (13) and (14), we deduce

$$e_{p,q}(x) E_{p,q}(y) = \widetilde{e}_{p,q}(x \oplus y)_{p,q},$$

which can be called addition formula for (p,q)-exponentials. Similar to the usual exponential function $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ and the q-exponential function $e_q(x) = \sum_{n=0}^{\infty} \frac{x^n}{[n]_q!}$, (p,q)-exponential function has the following derivative property

$$D_{p,q}\widetilde{e}_{p,q}\left(x\right) = \widetilde{e}_{p,q}\left(x\right).$$

Note that (p, q)-Pascal rules are given by (cf. [10])

$$\binom{n+1}{k}_{p,q} = p^k \binom{n}{k}_{p,q} + q^{n-k+1} \binom{n}{k-1}_{p,q},$$
(15)

and

$$\begin{bmatrix} n+1\\k \end{bmatrix}_{p,q} = q^k \begin{bmatrix} n\\k \end{bmatrix}_{p,q} + p^{n-k+1} \begin{bmatrix} n\\k-1 \end{bmatrix}_{p,q}.$$

$$(16)$$

Here, we give a theorem about properties of the (p, q)-binomial coefficients.

Theorem 2.1. Each (p,q)-binomial coefficient is a polynomial including the parameters p and q of degree k(n-k) whose leading coefficient is 1.

Proof. This theorem can be proved by the same method in the proof of Corollary 6.1. in [18]. \Box

Also, the coefficients in the polynomial expression of $\begin{bmatrix} n \\ k \end{bmatrix}_{p,q}$ are symmetric.

Note that the (p, q)-binomial coefficients also have combinatorial interpretations like q-binomial coefficients and usual binomial coefficients.

Definition 2.1. [25] The function F(x) is a q-antiderivative of f(x) if $D_{p,q}F(x) = f(x)$. It is shown by

$$\int f(x) \, d_{p,q} x.$$

The following proposition is a (p, q)-generalization of the Proposition 18.1 in the book [18].

Proposition 2.3. Let $0 < q < p \le 1$. Then, any function f(x) has at most one (p,q)-antiderivative which is continuous at x = 0, up to adding a constant.

Proof. By using the similar proof's technicals in [18] for q-antiderivative, this theorem can be proved directly. \Box

Let us consider the following formula for the change of variable $u = u(x) = \lambda x^{\mu}$ with λ, μ being constants. If F(x) is a (p,q)-antiderivative of f(x), then we have

$$\int f(u) d_{p,q}u = F(u) = F(u(x)).$$

Using the expression (8) we have for any \hat{p} and \hat{q}

$$F(u(x)) = \int D_{\hat{p},\hat{q}}F(u(x)) d_{\hat{p},\hat{q}}x$$

$$= \int \left(D_{\hat{p}^{\mu},\hat{q}^{\mu}}F\right)(u(x)) D_{\hat{p},\hat{q}}u(x) d_{\hat{p},\hat{q}}x$$

$$= \int \left(D_{\hat{p}^{\mu},\hat{q}^{\mu}}F\right)(u(x)) d_{\hat{p},\hat{q}}u(x).$$

If we take $\hat{p} = p^{1/\mu}$ and $\hat{q} = q^{1/\mu}$, then we have $D_{\hat{p}^{\mu},\hat{q}^{\mu}}F = D_{p,q}F = f$, and hence

$$\int f(u) \, d_{p,q} u = \int f(u(x)) \, d_{p^{1/\mu},q^{1/\mu}} u(x)$$

This formula implies that $f(u(x)) D_{p^{1/\mu},q^{1/\mu}}u(x)$ is one of the (p,q)-antiderivatives of f(x).

The (p,q)-integral is defined (see [25]) by

$$\int f(x) \, d_{p,q} x = (p-q) \sum_{k=0}^{\infty} \frac{q^k x}{p^{k+1}} f\left(\frac{q^k}{p^{k+1}} x\right).$$

Let $f(x) = \sum_{k=0}^{\infty} a_k x^k$ be a formal power series. Applying (p, q)-integral to the both sides of f(x) yields to

$$\int f(x) \, d_{p,q} x = \sum_{k=0}^{\infty} a_k \frac{x^{k+1}}{[k+1]_{p,q}} + C,$$

where C is a constant.

Some simple examples of (p, q)-integral are

$$\int (x \oplus y)_{p,q}^{n} d_{p,q} x = \frac{\left(\frac{x}{p} \oplus y\right)_{p,q}^{n+1}}{[n+1]_{p,q}} + C,$$
$$\int \widetilde{e}_{p,q}(x) d_{p,q} x = \widetilde{e}_{p,q}(x) + C,$$
$$\int e_{p,q}(x) d_{p,q} x = e_{p,q}\left(\frac{x}{p}\right) + C,$$
$$\int E_{p,q}(x) d_{p,q} x = E_{p,q}\left(\frac{x}{q}\right) + C.$$

3. (p,q)-Trigonometric functions

The (p,q)-analogues of the sine, cosine, tangent and cotangent functions can be defined in the same manner as their well known Euler expressions by means of the exponential functions.

Definition 3.1. Let $i = \sqrt{-1} \in \mathbb{C}$. Then two pairs of (p,q)-trigonometric functions are defined by

Using the identity (17), we have

$$\sin_{p,q} x \, \operatorname{Sin}_{p,q} x = -\frac{e_{p,q}(ix)E_{p,q}(ix) + e_{p,q}(-ix)E_{p,q}(-ix) - 2}{4},$$

and

$$\cos_{p,q} x \, \operatorname{Cos}_{p,q} x = \frac{e_{p,q}(ix)E_{p,q}(ix) + e_{p,q}(-ix)E_{p,q}(-ix) + 2}{4}.$$

Thus, we derive the following formula

 $\sin_{p,q} x \, \operatorname{Sin}_{p,q} x + \cos_{p,q} x \, \operatorname{Cos}_{p,q} x = 1,$

which is the (p, q)-analogue of the well-known formula

$$\sin^2 x + \cos^2 x = 1.$$

By means of the (p, q)-trigonometric functions, the corresponding secant and cosecant functions are described as

$\operatorname{sec}_{p,q} x := \frac{1}{\cos_{p,q} x},$	$\operatorname{csc}_{p,q} x := \frac{1}{\sin_{p,q} x},$
$\operatorname{Sec}_{p,q} x := \frac{1}{\operatorname{Cos}_{p,q} x},$	$\operatorname{Csc}_{p,q} x := \frac{1}{\operatorname{Sin}_{p,q} x}.$

Note that the (p,q)-tangent and (p,q)-cotangent functions coincide the following equalities

 $\tan_{p,q} x = \operatorname{Tan}_{p,q} x$ and $\operatorname{cot}_{p,q} x = \operatorname{Cot}_{p,q} x$,

which are (p, q)-extension of the results in [9]. The two (p, q)-tangent functions are valid, however, one of these functions may be more useful than the other under special cases.

Now let us investigate (p,q)-derivatives of the (p,q)-trigonometric functions. By making use of (3.1), we readily see that

$$D_{p,q} \sin_{p,q} x = D_{p,q} \left(\frac{e_{p,q}(ix) - e_{p,q}(-ix)}{2i} \right)$$

= $\frac{D_{p,q}e_{p,q}(ix) - D_{p,q}e_{p,q}(-ix)}{2i}$
= $\frac{e_{p,q}(px) + e_{p,q}(-px)}{2} = \cos_{p,q}(px)$

By the same way, the others are stated as follows.

Theorem 3.1. The (p,q)-derivative operator fulfils the following equalities

$D_{p,q}\sin_{p,q}x = \cos_{p,q}(px),$	$D_{p,q}Sin_{p,q}x = Cos_{p,q}(qx),$
$D_{p,q}\cos_{p,q}x = -\sin_{p,q}(px),$	$D_{p,q} Cos_{p,q} x = -Sin_{p,q} (qx),$
$D_{p,q} \tan_{p,q} x = 1 + \tan_{p,q} (px) \tan_{p,q} (qx),$	$D_{p,q} Tan_{p,q} x = 1 + Tan_{p,q} (px) Tan_{p,q} (qx),$
$D_{p,q} \cot_{p,q} x = -\frac{\sin_{p,q}^2(px) + \cos_{p,q}^2(px)}{\sin_{p,q}(px) \sin_{p,q}(qx)},$	$D_{p,q}Cot_{p,q}x = -\frac{Sin_{p,q}^{2}\left(qx\right) + Cos_{p,q}^{2}\left(qx\right)}{Sin_{p,q}\left(px\right)Sin_{p,q}\left(qx\right)},$
$D_{p,q} \sec_{p,q} x = \sec_{p,q} (qx) \tan_{p,q} (px),$	$D_{p,q}Sec_{p,q}x = Sec_{p,q}(px) Tan_{p,q}(qx),$
$D_{p,q} \csc_{p,q} x = -\csc_{p,q} (qx) \cot_{p,q} (px),$	$D_{p,q}Csc_{p,q}x = -Csc_{p,q}(px) Cot_{p,q}(qx).$

Now (p,q)-integration properties of the (p,q)-cosine and (p,q)-sine functions are given as follows.

Theorem 3.2. The following (p,q)-integrals are verified by easy computations:

$$\int \sin_{p,q} x d_{p,q} x = -\cos_{p,q} \left(\frac{x}{p}\right) + C,$$

$$\int \cos_{p,q} x d_{p,q} x = \sin_{p,q} \left(\frac{x}{p}\right) + C,$$

$$\int Sin_{p,q} x d_{p,q} x = -Cos_{p,q} \left(\frac{x}{q}\right) + C,$$

$$\int Cos_{p,q} x d_{p,q} x = Sin_{p,q} \left(\frac{x}{q}\right) + C.$$

The (p,q)-exponential functions are related to the (p,q)-cosine and (p,q)-sine functions as

$$e_{p,q}(ix) = \sum_{n=0}^{\infty} p^{\binom{n}{2}} i^n \frac{x^n}{[n]_{p,q}!}$$

=
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{[2n]_{p,q}!} p^{(2n-1)n} x^{2n} + i \sum_{n=0}^{\infty} \frac{(-1)^n}{[2n+1]_{p,q}!} p^{(2n+1)n} x^{2n+1}$$

=
$$\cos_{p,q}(x) + i \sin_{p,q}(x),$$

and

$$E_{p,q}(ix) = \sum_{n=0}^{\infty} q^{\binom{n}{2}} i^n \frac{x^n}{[n]_{p,q}!}$$

=
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{[2n]_{p,q}!} q^{(2n-1)n} x^{2n} + i \sum_{n=0}^{\infty} \frac{(-1)^n}{[2n+1]_{p,q}!} q^{(2n+1)n} x^{2n+1}$$

=
$$Cos_{p,q}(x) + i Sin_{p,q}(x) .$$

The following theorem includes a connection with (p,q)-sine and (p,q)-cosine functions. **Theorem 3.3.** We have

$$\sin_{p,q} x \ Cos_{p,q} x = \cos_{p,q} x \ Sin_{p,q} x.$$

The (p,q)-analogues of hyperbolic functions can be defined in the same manner with their well known Euler expressions by means of the exponential functions.

Definition 3.2. The (p,q)-hyperbolic functions are described as

$\sinh_{p,q} x = \frac{e_{p,q}(x) - e_{p,q}(-x)}{2},$	$Sinh_{p,q}x = \frac{E_{p,q}(x) - E_{p,q}(-x)}{2},$	
$\cosh_{p,q} x = \frac{e_{p,q}(x) + e_{p,q}(-x)}{2},$	$Cosh_{p,q}x = \frac{E_{p,q}(x) + E_{p,q}(-x)}{2},$	(10)
$\tanh_{p,q} x = \frac{\sinh_{p,q} x}{\cosh_{p,q} x},$	$Tanh_{p,q}x = \frac{Sinh_{p,q}x}{Cosh_{p,q}x},$	(18)
$\operatorname{coth}_{p,q} x = \frac{\operatorname{cosh}_{p,q} x}{\sinh_{p,q} x},$	$Coth_{p,q}x = \frac{Cosh_{p,q}x}{Sinh_{p,q}x}.$	

The following relationhips hold true:

$$e_{p,q}(x) = \cosh_{p,q} x + \sinh_{p,q} x, \quad E_{p,q}(x) = Cosh_{p,q} x + Sinh_{p,q} x.$$

Using the identity (18), we have

$$\sinh_{p,q} x \, \operatorname{Sinh}_{p,q} x = \frac{e_{p,q}(x)E_{p,q}(x) + e_{p,q}(-x)E_{p,q}(-x) - 2}{4}$$

and

$$\cosh_{p,q} x \operatorname{Cosh}_{p,q} x = \frac{e_{p,q}(x)E_{p,q}(x) + e_{p,q}(-x)E_{p,q}(-x) + 2}{4}$$

Hence, we observe that

$$\cosh_{p,q} x \operatorname{Cosh}_{p,q} x - \sinh_{p,q} x \operatorname{Sinh}_{p,q} x = 1,$$

which is the (p, q)-analogue of the well known formula

$$\cosh^2 x - \sinh^2 x = 1.$$

Following the (p, q)-hyperbolic functions, the hyperbolic (p, q)-secant and (p, q)-cosecant functions are defined by

$\operatorname{sech}_{p,q} x := \frac{1}{\cosh_{p,q} x},$	$\operatorname{csch}_{p,q} x := \frac{1}{\sinh_{p,q} x},$
-	

The following theorem consists of the (p,q)-derivative properties of (p,q)-hyperbolic functions.

$D_{p,q}\sinh_{p,q}x = \cosh_{p,q}(px),$	$D_{p,q}Sinh_{p,q}x = Cosh_{p,q}(qx),$
$D_{p,q}\cosh_{p,q} x = \sinh_{p,q} (px),$	$D_{p,q} Cosh_{p,q} x = Sinh_{p,q} (qx),$
$D_{p,q} \tanh_{p,q} x = 1 - \tanh_{p,q} (px) \tanh_{p,q} (qx),$	$D_{p,q} Tanh_{p,q} x = 1 - Tanh_{p,q} (px) Tanh_{p,q} (qx),$
$D_{p,q} \operatorname{coth}_{p,q} x = \frac{\sinh_{p,q}^{2} (px) - \cosh_{p,q}^{2} (px)}{\sinh_{p,q} (px) \sinh_{p,q} (qx)},$	$D_{p,q} Coth_{p,q} x = \frac{Sinh_{p,q}^2 (qx) - Cosh_{p,q}^2 (qx)}{Sinh_{p,q} (px) Sinh_{p,q} (qx)},$
$ \sinh_{p,q} (px) \sinh_{p,q} (qx) , $	$Sinh_{p,q}(px)Sinh_{p,q}(qx)$
$D_{p,q} \operatorname{sech}_{p,q} x = -\operatorname{sech}_{p,q} (qx) \tanh_{p,q} (px),$	$D_{p,q}Sech_{p,q}x = -Sech_{p,q}(px) Tanh_{p,q}(qx),$
$D_{p,q} \operatorname{csch}_{p,q} x = -\operatorname{csch}_{p,q} (qx) \operatorname{coth}_{p,q} (px),$	$D_{p,q}Csch_{p,q}x = -Csch_{p,q}(px) Coth_{p,q}(qx).$

Theorem 3.4. The (p,q)-derivative operator fulfils the following equations

The following theorem includes the (p,q)-integral properties of (p,q)-hyperbolic functions. **Theorem 3.5.** We have

$\int \sinh_{p,q}(x) d_{p,q}x = \cosh_{p,q}\left(\frac{x}{p}\right) + C,$
$\int \cosh_{p,q}(x) d_{p,q}x = \sinh_{p,q}\left(\frac{x}{p}\right) + C,$
$\int Sinh_{p,q}\left(x\right)d_{p,q}x = Cosh_{p,q}\left(\frac{x}{q}\right) + C,$
$\int Cosh_{p,q}(x) d_{p,q}x = Sinh_{p,q}\left(\frac{x}{q}\right) + C.$

The (p,q)-exponential functions are related to the (p,q)- hyperbolic cosine and (p,q)- hyperolic sine functions by

$$e_{p,q}(x) = \sum_{n=0}^{\infty} p^{\binom{n}{2}} \frac{x^n}{[n]_{p,q}!}$$

=
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{[2n]_{p,q}!} p^{(2n-1)n} x^{2n} + \sum_{n=0}^{\infty} \frac{(-1)^n}{[2n+1]_{p,q}!} p^{(2n+1)n} x^{2n+1}$$

=
$$\cosh_{p,q}(x) + \sinh_{p,q}(x),$$

and

$$E_{p,q}(x) = \sum_{n=0}^{\infty} q^{\binom{n}{2}} \frac{x^n}{[n]_{p,q}!}$$

=
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{[2n]_{p,q}!} q^{(2n-1)n} x^{2n} + \sum_{n=0}^{\infty} \frac{(-1)^n}{[2n+1]_{p,q}!} q^{(2n+1)n} x^{2n+1}$$

=
$$\operatorname{Cosh}_{p,q} x + \operatorname{Sinh}_{p,q} x.$$

Using the formulas (11) and (12), we obtain the following results.

$\sin_{\frac{1}{p},\frac{1}{q}}x = Sin_{p,q}x,$	$\operatorname{Sin}_{\frac{1}{p},\frac{1}{q}} x = \sin_{p,q} x,$
$\cos_{\frac{1}{p},\frac{1}{q}}x = Cos_{p,q}x,$	$Cos_{\frac{1}{p},\frac{1}{q}}x = \cos_{p,q}x,$
$\tan_{\frac{1}{p},\frac{1}{q}}x = Tan_{p,q}x,$	$Tan_{\frac{1}{p},\frac{1}{q}}x = \tan_{p,q}x,$
$\cot_{\frac{1}{p},\frac{1}{q}}x = Cot_{p,q}x,$	$Cot_{\frac{1}{p},\frac{1}{q}}x = \cot_{p,q}x,$
$\sec_{\frac{1}{p},\frac{1}{q}} x = Sec_{p,q}x,$	$Sec_{\frac{1}{p},\frac{1}{q}}x = \sec_{p,q}x,$
$\csc_{\frac{1}{p},\frac{1}{q}}x = Csc_{p,q}x,$	$Csc_{\frac{1}{p},\frac{1}{q}}x = \csc_{p,q}x,$
$\sinh_{\frac{1}{p},\frac{1}{q}} x = Sinh_{p,q}x,$	$Sinh_{\frac{1}{p},\frac{1}{q}}x = \sinh_{p,q}x,$
$\cosh_{\frac{1}{p},\frac{1}{q}} x = Cosh_{p,q}x,$	$Cosh_{\frac{1}{p},\frac{1}{q}}x = \cosh_{p,q}x,$
$\tanh_{\frac{1}{p},\frac{1}{q}} x = Tanh_{p,q}x,$	$Tanh_{\frac{1}{p},\frac{1}{q}}x = \tanh_{p,q}x,$
$\operatorname{coth}_{\frac{1}{p},\frac{1}{q}} x = \operatorname{Coth}_{p,q} x,$	$Coth_{\frac{1}{p},\frac{1}{q}}x = \operatorname{coth}_{p,q}x,$
$sech_{\frac{1}{p},\frac{1}{q}}x = Sech_{p,q}x,$	$Sech_{\frac{1}{p},\frac{1}{q}}x = sech_{p,q}x,$
$csch_{\frac{1}{p},\frac{1}{q}}x = Csch_{p,q}x,$	$Csch_{\frac{1}{p},\frac{1}{q}}x = csch_{p,q}x.$

Theorem 3.6. The following identities are readily attested:

In terms of the new (p,q)-exponential function $\tilde{e}_{p,q}x$, the corresponding trigonometric functions can be defined as

$\boxed{\widetilde{\sin}_{p,q}x := \frac{\widetilde{e}_{p,q}(ix) - \widetilde{e}_{p,q}(-ix)}{2i}},$	$\widetilde{\tan}_{p,q} x := \frac{\widetilde{\sin}_{p,q} x}{\widetilde{\cos}_{p,q} x},$
$\widetilde{\cos}_{p,q}x := \frac{\widetilde{e}_{p,q}(ix) + \widetilde{e}_{p,q}(-ix)}{2},$	
$\widetilde{\operatorname{sec}}_{p,q}x = \frac{1}{\widetilde{\cos}_{p,q}x},$	$\widetilde{\operatorname{csc}}_{p,q}x = \frac{1}{\widetilde{\sin}_{p,q}x},$

which satisfy

$$\frac{D_{p,q}\widetilde{\sin}_{p,q}x = \widetilde{\cos}_{p,q}x,}{D_{p,q}\widetilde{\cos}_{p,q}x = -\widetilde{\sin}_{p,q}x,}$$

$$\frac{D_{p,q}\widetilde{\cos}_{p,q}x = -\widetilde{\sin}_{p,q}x,}{\widetilde{\cos}_{p,q}(qx)},$$

$$\frac{D_{p,q}\widetilde{\tan}_{p,q}x = \frac{\widetilde{\cos}_{p,q}x + \widetilde{\tan}_{p,q}(px)\widetilde{\sin}_{p,q}x}{\widetilde{\sin}_{p,q}(qx)},}{\widetilde{\sin}_{p,q}(qx)},$$

$$\frac{D_{p,q}\widetilde{\cot}_{p,q}x = -\frac{\widetilde{\sin}_{p,q}x + \widetilde{\cot}_{p,q}(px)\widetilde{\cos}_{p,q}x}{\widetilde{\sin}_{p,q}(qx)},}{\widetilde{\cos}_{p,q}(qx)},$$

$$\frac{D_{p,q}\widetilde{\sec}_{p,q}x = \frac{\widetilde{\sin}_{p,q}x}{\widetilde{\cos}_{p,q}(px)\widetilde{\cos}_{p,q}(qx)},}{\widetilde{\sin}_{p,q}(px)\widetilde{\sin}_{p,q}(qx)}.$$

The $(p,q)\text{-exponential functions}~\widetilde{e}_{p,q}x$ are correlated with the new (p,q)-cosine and (p,q)-sine functions as

$$\begin{split} \widetilde{e}_{p,q} \left(ix \right) &= \sum_{n=0}^{\infty} i^n \frac{x^n}{[n]_{p,q}!} \\ &= \sum_{n=0}^{\infty} \frac{(-1)^n}{[2n]_{p,q}!} x^{2n} + i \sum_{n=0}^{\infty} \frac{(-1)^n}{[2n+1]_{p,q}!} x^{2n+1} \\ &= \widetilde{\cos}_{p,q} \left(x \right) + i \widetilde{\sin}_{p,q} \left(x \right). \end{split}$$

In terms of the new (p,q)-exponential functions $\tilde{e}_{p,q}x$, the corresponding hyperbolic functions are described as

$\widetilde{\sinh}_{p,q} x := \frac{\widetilde{e}_{p,q}(x) - \widetilde{e}_{p,q}(-x)}{2},$	$\widetilde{\tanh}_{p,q} x := \frac{\widetilde{\sinh}_{p,q} x}{\widetilde{\cosh}_{p,q} x},$
$\widetilde{\cosh}_{p,q} x := \frac{\widetilde{e}_{p,q}(x) + \widetilde{e}_{p,q}(-x)}{2},$	$\widetilde{\coth}_{p,q} x := \frac{\cosh_{p,q} x}{\sinh_{p,q} x},$
$\widetilde{\operatorname{sech}}_{p,q} x = \frac{1}{\widetilde{\cosh}_{p,q} x},$	$\widetilde{\operatorname{csch}}_{p,q} x = \frac{1}{\widetilde{\sinh}_{p,q} x},$

which fulfil

$D_{p,q}\widetilde{\sinh}_{p,q}x = \widetilde{\cosh}_{p,q}x,$	
$\widetilde{D_{p,q} \cosh_{p,q} x} = \widetilde{\sinh}_{p,q} x,$	
$D_{p,q} \widetilde{\tanh}_{p,q} x = \frac{\widetilde{\cosh}_{p,q} x + \widetilde{\tanh}_{p,q} (px) \widetilde{\sinh}_{p,q} x}{\widetilde{\cosh}_{p,q} (qx)},$	
$D_{p,q} \widetilde{\coth}_{p,q} x = -\frac{\widetilde{\sinh}_{p,q} x - \widetilde{\coth}_{p,q} (px) \widetilde{\cosh}_{p,q} x}{\widetilde{\sinh}_{p,q} (qx)},$	
$D_{p,q} \widetilde{\operatorname{sech}}_{p,q} x = -\frac{\widetilde{\sinh}_{p,q} x}{\widetilde{\cosh}_{p,q} (px) \widetilde{\cosh}_{p,q} (qx)},$	
$D_{p,q}\widetilde{\mathrm{csch}}_{p,q}x = -\frac{\widetilde{\mathrm{cosh}}_{p,q}x}{\widetilde{\mathrm{sinh}}_{p,q}(px)\widetilde{\mathrm{sinh}}_{p,q}(qx)}.$	

Theorem 3.7. The following (p,q)-integrals are valid:

$\int \widetilde{\sin_{p,q} x d_{p,q} x} = -\widetilde{\cos_{p,q} x} + C,$
$\int \widetilde{\cos}_{p,q} x d_{p,q} x = \widetilde{\sin}_{p,q} x + C,$
$\int \widetilde{\sinh}_{p,q} x d_{p,q} x = \widetilde{\cosh}_{p,q} x + C,$
$\int \widetilde{\cosh}_{p,q} x d_{p,q} x = \widetilde{\sinh}_{p,q} x + C.$

New (p,q)-trigonometric functions can be expressed by earlier defined (p,q)-trigonometric functions as follows.

Theorem 3.8. The following equalities

$\widetilde{\sin}_{p,q} (x \oplus x)_{p,q} = \sin_{p,q} x \ Cos_{p,q} x + \cos_{p,q} x Sin_{p,q} x,$
$\widetilde{\sin}_{p,q} (x \ominus x)_{p,q} = \sin_{p,q} x \ Cos_{p,q} x - \cos_{p,q} x Sin_{p,q} x,$
$\boxed{\widetilde{\cos}_{p,q} (x \oplus x)_{p,q} = \cos_{p,q} x \ Cos_{p,q} x - \sin_{p,q} x Sin_{p,q} x,}$
$\widetilde{\cos}_{p,q} (x \ominus x)_{p,q} = \cos_{p,q} x \ Cos_{p,q} x + \sin_{p,q} x Sin_{p,q} x,$
$sinh_{p,q} (x \oplus x)_{p,q} = sinh_{p,q} x Cosh_{p,q} x + cosh_{p,q} x Sinh_{p,q} x,$
$\[\sinh_{p,q} (x \ominus x)_{p,q} = \sinh_{p,q} x \operatorname{Cosh}_{p,q} x - \cosh_{p,q} x \operatorname{Sinh}_{p,q} x,\]$
$\cosh_{p,q} (x \oplus x)_{p,q} = \cosh_{p,q} x \operatorname{Cosh}_{p,q} x + \sinh_{p,q} x \operatorname{Sinh}_{p,q} x,$
$\[\cosh_{p,q} (x \ominus x)_{p,q} = \cosh_{p,q} x \operatorname{Cosh}_{p,q} x - \sinh_{p,q} x \operatorname{Sinh}_{p,q} x\]$

 $are \ true.$

The following intriguing identities between $(p,q)\mbox{-}{\rm trigonometric}$ and $(p,q)\mbox{-}{\rm hyperbolic}$ functions hold true.

$ \begin{array}{l} \sinh_{p,q} x = -i \sin_{p,q}(ix) \\ Sinh_{p,q} x = -i Sin_{p,q}(ix) \\ \widetilde{\sinh}_{p,q} x = -i \widetilde{\sin}_{p,q}(ix) \end{array} $	$q \rightarrow p = 1$	$\sinh x = -i\sin(ix),$
$ \begin{array}{c} \cosh_{p,q} x = \cos_{p,q} \left(ix \right) \\ Cosh_{p,q} x = Cos_{p,q} \left(ix \right) \\ \widetilde{\cosh}_{p,q} x = \widetilde{\cos}_{p,q} \left(ix \right) \end{array} $	$q \rightarrow p = 1$	$\cosh x = \cos\left(ix\right),$
$\begin{array}{ c c } & \tanh_{p,q} x = -i \tan_{p,q}(ix) \\ & Tanh_{p,q} x = -i Tan_{p,q}(ix) \\ & \widetilde{\tanh}_{p,q} x = -i \widetilde{\tan}_{p,q}(ix) \end{array}$	$q \rightarrow p = 1$	$\tanh x = -i\tan(ix),$
$\begin{array}{ c c }\hline \operatorname{coth}_{p,q} x = i \operatorname{cot}_{p,q}(ix) \\ \hline Coth_{p,q} x = i Cot_{p,q}(ix) \\ \hline \operatorname{coth}_{p,q} x = i \widetilde{\operatorname{cot}}_{p,q}(ix) \end{array}$	$q \rightarrow p = 1$	$\coth x = i \cot(ix).$

Theorem 3.9. We have

Here the (p, q)-trigonometric functions and the (p, q)-hypergeometric functions are examined whether these functions are odd functions or even functions.

Theorem 3.10. We have

	-	
$\sin_{p,q}\left(-x\right) = -\sin_{p,q}x,$	$Sin_{p,q}\left(-x\right) = -Sin_{p,q}x,$	$\widetilde{\sin}_{p,q}(-x) = -\widetilde{\sin}_{p,q}x,$
$\cos_{p,q}(-x) = \cos_{p,q} x,$	$Cos_{p,q}(-x) = Cos_{p,q}x,$	$\widetilde{\cos}_{p,q}\left(-x\right) = \widetilde{\cos}_{p,q}x,$
$\tan_{p,q}\left(-x\right) = -\tan_{p,q}x,$	$Tan_{p,q}\left(-x\right) = -Tan_{p,q}x,$	$\widetilde{\tan}_{p,q}\left(-x\right) = -\widetilde{\tan}_{p,q}x,$
$\cot_{p,q}(-x) = -\cot_{p,q}x,$	$Cot_{p,q}\left(-x ight) = -Cot_{p,q}x,$	$\widetilde{\cot}_{p,q}(-x) = -\widetilde{\cot}_{p,q}x,$
$\sec_{p,q}\left(-x\right) = \sec_{p,q}x,$	$Sec_{p,q}\left(-x\right) = Sec_{p,q}x,$	$\widetilde{\operatorname{sec}}_{p,q}\left(-x\right) = \widetilde{\operatorname{sec}}_{p,q}x,$
$\csc_{p,q}(-x) = -\csc_{p,q}x,$	$Csc_{p,q}(-x) = -Csc_{p,q}x,$	$\widetilde{\operatorname{csc}}_{p,q}\left(-x\right) = -\widetilde{\operatorname{csc}}_{p,q}x,$
$\sinh_{p,q}(-x) = -\sinh_{p,q}x,$	$Sinh_{p,q}\left(-x\right) = -Sinh_{p,q}x,$	$\widetilde{\sinh}_{p,q}(-x) = -\widetilde{\sinh}_{p,q}x,$
$\cosh_{p,q}(-x) = \cosh_{p,q} x,$	$Cosh_{p,q}\left(-x\right) = Cosh_{p,q}x,$	$\widetilde{\cosh}_{p,q}\left(-x\right) = \widetilde{\cosh}_{p,q}x,$
$\tanh_{p,q}(-x) = -\tanh_{p,q} x,$	$Tanh_{p,q}(-x) = -Tanh_{p,q}x,$	$\widetilde{\tanh}_{p,q}\left(-x\right) = -\widetilde{\tanh}_{p,q}x,$
$\cosh_{p,q}(-x) = -\coth_{p,q} x,$	$Coth_{p,q}(-x) = -Coth_{p,q}x,$	$\widetilde{\coth}_{p,q}\left(-x\right) = -\widetilde{\coth}_{p,q}x,$
$sech_{p,q}(-x) = sech_{p,q}x,$	$Sech_{p,q}\left(-x\right) = Sech_{p,q}x,$	$\widetilde{sech}_{p,q}\left(-x\right) = \widetilde{sech}_{p,q}x,$
$csch_{p,q}\left(-x\right) = -csch_{p,q}x,$	$Csch_{p,q}(-x) = -Csch_{p,q}x,$	$\widetilde{csch}_{p,q}\left(-x\right) = -\widetilde{csch}_{p,q}x.$

4. Conclusion

We have obtained some new results for *post-quantum calculus*, denoted by (p,q)-calculus. Our study in content is as follows: a chain rule for (p,q)-derivative has been given, a new (p,q)analogue of the exponential functions has been introduced and some of its properties including the addition property for (p,q)-exponential functions have been investigated. Several useful results involving (p,q)binomial coefficients and (p,q)-anti-derivatives been discovered. Finally, (p,q)-analogue of some elementary functions including trigonometric functions and hyperbolic functions have been listed and some properties and relations among them have been mentioned.

References

- Acar, T., Aral, A., Mohiuddine, S.A., (2016), On Kantorovich modification of (p,q)-Baskakov operators, J. Inequal. Appl., 98, 14 pp.
- [2] Araci, S., Duran, U., Acikgoz, M., (2017), (p,q)-Volkenborn integral, J. Number Theory, 171, pp.18-30.
- [3] Araci, S., Duran, U., Acikgoz, M., Srivastava, H.M., (2016), A certain (p, q)-derivative operator and associated divided differences, Journal of Inequalities and Applications, 301, 8 pp.

- [4] Arik, M., Demircan, E., Turgut, T., Ekinci, L., Mungan, M., (1992), Fibonacci oscillators, Z. Phys. C-Particles and Fields, 55, pp.89-95.
- [5] Brodimas, G., Jannussis, A., Mignani, R., (1991), Two-parameter Quantum Groups, Universita di Roma Preprint Nr., 820.
- [6] Burban, I.M., Klimyk, A.U., (1994), P, Q-differentiation, P, Q-integration and P, Q-hypergeometric functions related to quantum groups, Integral Transforms Spec. Funct., 2(1), pp.15-36.
- [7] Chakrabarti, R., Jagannathan, R., (1991), A (p,q)-oscillator realization of two-parameter quantum algebras, J. Phys. A: Math. Gen., 24(7), L711-L718.
- [8] Cheon, G.S., (2003), A note on the Bernoulli and Euler polynomials, Appl. Math. Lett., 16(3), pp.365-368.
- [9] Cieśliński, J.L., (2010), Improved q-exponential and q-trigonometric functions, arXiv:1006.5652v1 [math.CA].
- [10] Corcino, R.B., (2008), On P, Q-Binomial coefficients, Electron. J. Combin. Number Theory, 8(2008).
- [11] Duran, U., Acikgoz, M., Araci, S., (2016), On some polynomials derived from (p,q)-calculus, J. Comput. Theor. Nanosci., 13(11), pp.7903-7908.
- [12] Duran, U., Acikgoz, M., Araci, S., (2018), Research on some new results arising from multiple q-calculus, Filomat, 32(1), pp.1-9.
- [13] Duran, U., Acikgoz, M., Araci, S., (2016), On (p,q)-Bernoulli, (p,q)-Euler and (p,q)-Genocchi polynomials, J. Comput. Theor. Nanosci., 13(11), pp.7833-7846.
- [14] Ernst, T., (2000), The history of q-calculus and a new method, U.U.D.M. Department of Mathematics, Uppsala University, Uppsala Report 2000.
- [15] Jackson, F.H., (1910), On q-definite integrals, Quart J. Pure Appl. Math., 41, pp.193-203.
- [16] Jagannathan, R., Rao, K.S., (2005), Two-parameter quantum algebras, twin-basic numbers, and associated generalized hypergeometric series, in Proceeding of the International Conference on Number Theory and Mathematical Physics, Srinivasa Ramanujan Centre, Kumbakonam, India, 20-21 December.
- [17] Jagannathan, R., (1997), (P,Q)-Special functions, Special Functions and Differential Equations, Proceedings of a Workshop held at The Institute of Mathematical Sciences, Matras, India, pp.13-24.
- [18] Kac, V., Cheung, P., (2002), Quantum Calculus, New York: Springer.
- [19] Kim, T., (2007), q-Extension of the Euler formula and trigonometric functions, Russ. J. Math. Phys., 14(3), pp.275-278.
- [20] Mursaleen, M., Ansari, K.J., Khan, A., (2015), On (p,q)-analogue of Bernstein operators, Appl. Math. Comput., 266, pp.874-882.
- [21] Mursaleen, M., Alotaibi, A., Ansari, KH., (2016), On a Kantorovich variant of (p,q)-Szász-Mirakjan operators, J. Funct. Spaces, Article ID 1035253, 9 pp.
- [22] Mursaleen, M., Ansari, KJ., Khan, A., (2015), Some approximation results by (p,q)-analogue of Bernstein-Stancu operators, Appl. Math. Comput., 264, pp.392-402.
- [23] Mursaleen, M., Nasiuzzaman, M., Nurgali, A., (2015), Some approximation results on Bernstein-Schurer operators defined by (p, q)-integers, J. Inequal. Appl., Article ID 249, 12 pp.
- [24] Nalci, S., Nalci, O.K., (2014), Exactly Solvable q-Extended Nonlinear Classical and Quantum Models, Lambert Academic Publishing, 272 pp.
- [25] Sadjang, P.N., (2013), On the fundamental theorem of (p,q)-calculus and some (p,q)-Taylor formulas, arXiv:1309.3934 [math.QA].
- [26] Sadjang, P.N., (2015), On the (p,q)-Gamma and the (p,q)-Beta functions, arXiv 1506.07394v1 [math.QA].
- [27] Srivastava, H.M., Pinter, A., (2004), Remarks on some relationships between the bernoulli and euler polynomails, Appl. Math. Lett., 17, pp.375-380.
- [28] Wachs, M., White, D., (1991), (p,q)-Stirling numbers and set partition statistics, J. Combin. Theory Ser, A. 56(1), pp.27-46.

Ugur Duran - was born in Gaziantep, Turkey, in 1993. His research interests include p-adic analysis, theory of analytic numbers, q-series and qpolynomials, p-adic analysis, and theory of umbral calculus. He currently works as a lecturer at Iskenderun Technical University, Hatay, Turkey.

Mehmet Acikgoz - received M. Sc. And Ph. D. degrees from Cukurova University, Turkey. He is currently a Full Professor at University of Gaziantep. His research interests are approximation theory, functional analysis, p-adic analysis and analytic numbers theory.

Serkan Araci - was born in Hatay, Turkey, in 1988. His research interests include p-adic analysis, theory of analytic numbers, q-series and qpolynomials, p-adic analysis, and theory of umbral calculus. Currently, he works as an Assistant Professor at Hasan Kalyoncu University, Gaziantep, Turkey.