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A STUDY ON SOME NEW RESULTS ARISING FROM (p, q)-CALCULUS

UGUR DURAN1, MEHMET ACIKGOZ2 AND SERKAN ARACI3

Abstract. This paper includes some new investigations and results for post quantum calculus,

denoted by (p, q)-calculus. A chain rule for (p, q)-derivative is given. Also, a new (p, q)-analogue

of the exponential function is introduced and its properties including the addition property for

(p, q)-exponential functions are investigated. Several useful results involving (p, q)binomial co-

efficients and (p, q)-antiderivative are discovered. At the final part of this paper, (p, q)-analogue

of some elementary functions including trigonometric functions and hyperbolic functions are

considered and some properties and relations among them are analyzed extensively.
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1. Introduction

As q-calculus including q-numbers with one base q is dealt with by some scientists since

XIX century, (p, q)-calculus including (p, q)-number with independent two variables p and q are

firstly considered circa the same time (1991) and independently by [7], et al. [5], [28], et al.

[4]. [7] introduced the (p, q)-number to generalize or unify several forms of q-oscillator algebras

well-known in the physics literature related to the representation theory of single parameter

quantum algebras. [5] introduced (p, q)-number so that (p, q)-algebra can be derived from q-

calculus by a Bargmann differential realization of the creation and annihilation operator, the

Bose representation of those operators was derived, and (p, q)-Harmonic oscillator was con-

structed. White [28] introduced (p, q) -number in mathematical literature in order to obtain

(p, q)-Stirling number which is the generating function of the joint distribution of pairs of statis-

tics. [4] introduced (p, q)-number to investigate Fibonacci oscillators. Thereby, several physical

and mathematical problems lead to the necessity of (p, q)-calculus. Based on the aforementioned

papers, many mathematicians and physicists have developed the (p, q)-calculus in many different

research areas since 1991. For instance, [6] introduced (p, q)-hypergeometric functions and stud-

ied the relations among the basic hypergeometric functions, q-hypergeometric functions, and

(p, q)-hypergeometric functions in 1994. [17] considered a more general (p, q)-hypergeometric
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series as well as Burban’s (p, q)-hypergeometric series in [6] and he derived some related pre-

liminary results in 1997. In 2005, [16] gave a method to embed the q-series into a (p, q)-series,

discovered some results corresponding (p, q)-extensions of the known q-identities and they also

studied about (p, q)-hypergeometric series, based on the (p, q)-numbers. In 2008, [10] developed

the (p, q)-extension of the binomial coefficients and also established some properties parallel

to those of the ordinary and q-binomial coefficients. [25] investigated some properties of the

(p, q)-derivative and the (p, q)-integration and presented two appropriate polynomial bases for

the (p, q)-derivative, and then derived various properties of these bases in the year 2013. As an

application, he gave two (p, q)-Taylor formulas for polynomials. Furthermore, the fundamental

theorem of (p, q)-calculus and the formula of (p, q)-integration by part were given. In the year

2015, [26] introduced a new generalization of the Gamma and the Beta functions, calling as

(p, q)-Gamma and (p, q)-Beta functions and developed some of their properties reduced to the

known results as special cases.

Recently, (p, q)-integers have been introduced into classical linear positive operators to con-

struct new approximation processes. A sequence of (p, q)-analogue of Bernstein operators was

first introduced by [20]. For further developments, one can also refer to [1], [21], [22], [23].

The (p, q)-analogues of Bernoulli polynomials, Euler polynomials, and Genocchi polynomials

were described by et al. [11] in early 2016 and the (p, q)-analogues of known earlier formulae

were obtained, and relations between the new and old polynomials were investigated by making

use of the fermionic p-adic integral over the p -adic number fields. Also, in early 2016, a

new class of Bernoulli, Euler and Genocchi polynomials based on the theory of (p, q)-calculus

were considered by et al. [13] some of their properties including addition theorems, difference

equations, derivative properties, recurrence relationships were investigated. The (p, q)-extension

of main result in [8] was acquired, and further, the (p, q)-analogue of the main results given earlier

by [27] was discovered in [13]. et al. [3] researched and gave some connections between the (p, q)-

derivative operators and divided differences in 2016. Moreover, in 2016, et al. [2] considered an

extension of Haar distribution based on (p, q)-numbers. By means of this distribution, the (p, q)-

analogue of Volkenborn integration that is a new generalization of q -Volkenborn integration was

derived. Some properties of Volkenborn integration based on (p, q)-numbers were investigated.

Finally, (p, q) -Bernoulli numbers and polynomials derived from (p, q)-Volkenborn integral were

constructed and also some of their properties were obtained.

We now review briefly some concepts of the (p, q)-calculus.

We begin with the following notations: N denotes the set of the natural numbers, N0 denotes

the set of nonnegative integers, R denotes the set of real numbers, and C denotes the set of

complex numbers.

The twin-basic number or (p, q)-number is defined by, for any number n,

[n]p,q :=
pn − qn

p− q
= pn−1 + pn−2q + · · ·+ pqn−2 + qn−1

which is a natural generalization of the q-number such that

[n]1,q := [n]q =
1− qn

1− q
= 1 + q + · · ·+ qn−2 + qn−1,

Note that [n]p,q = [n]q,p.

The (p, q)-derivative of a function f with respect to x is defined by

Dp,q;xf (x) := Dp,qf (x) =
f (px)− f (qx)

(p− q)x
(x ̸= 0) , (1)
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and (Dp,qf) (0) = f ′ (0), provided that f is differentiable at 0. As with the q-derivative and

the ordinary derivative, the action of applying the (p, q) -derivative of any function is a linear

operator, viz., for any constants a and b,

Dp,q (af (x) + bg (x)) = aDp,qf (x) + bDp,qg (x) .

The (p, q)-derivatives of product and the quotient of f (x) and g (x) are given by

Dp,q (f (x) g (x)) = g (px)Dp,qf (x) + f (qx)Dp,qg (x) = f (px)Dp,qg (x) + g (qx)Dp,qf (x) , (2)

and

Dp,q

(
f (x)

g (x)

)
=

g (qx)Dp,qf (x)− f (qx)Dp,qg (x)

g (px) g (qx)
=

g (px)Dp,qf (x)− f (px)Dp,qg (x)

g (px) g (qx)
. (3)

As well as the formulas (1.4) and (1.5) we may write one more representation in symmetrical

form

Dp,q

(
f (x)

g (x)

)
=

1

2

Dp,qf (x) (g (px) + g (qx))−Dp,qg (x) (f (px) + f (qx))

g (px) g (qx) .
. (4)

The formulas in Eqs. (1)-(4) are valid, however one of these forms may be more useful than

others under special cases.

The (p, q)-Gauss Binomial formula is defined by

(x⊕ a)np,q =

{
(x+ a)(px+ aq) · · · (pn−2x+ aqn−2)(pn−1x+ aqn−1), if n ≥ 1,

1, if n = 0,

=

n∑
k=0

[
n

k

]
p,q

p(
k
2)q(

n−k
2 )xkan−k,

where the notations
[
n
k

]
p,q

and [n]p,q! are defined by[
n

k

]
p,q

=
[n]p,q!

[n− k]p,q! [k]p,q!
, (n ≥ k) ,

and

[n]p,q! = [n]p,q [n− 1]p,q · · · [2]p,q [1]p,q , (n ∈ N) .
The (p, q)-exponential functions, ep,q(x) and Ep,q(x), are defined by

ep,q(x) =

∞∑
n=0

p

(
n
2

)
xn

[n]p,q!
,

and

Ep,q(x) =
∞∑
n=0

q

(
n
2

)
xn

[n]p,q!
,

which hold the basic identity

ep,q(x)Ep,q(−x) = 1. (5)

The following (p, q)-derivatives hold true:

Dp,qep,q(x) = ep,q(px) and Dp,qEp,q(x) = Ep,q(qx). (6)

Note that the (p, q)-derivatives of the (p, q) -exponentials are not precisely determined. However

those derivatives are in the similar form of the derivatives of classical exponential functions.

A more detailed statement of above, including (p, q)-numbers, is found in [1-7, 10, 11, 13, 16,

17, 20-23, 25].
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Taking here p = 1, then all notations given in this part are reduce to the notations of the

usual q-calculus (for details see [9, 12, 14, 15, 18, 19, 21]).

2. Main Results

The formulas (3) and (4) can be rewritten in explicitly symmetrical form:

Dp,q (f (x) g (x)) = Dp,qf (x)

(
g (px) + g (qx)

2

)
+Dp,qg (x)

(
f (px) + f (qx)

2

)
. (7)

More general form of the multiplication rule of (p, q)-derivative is presented with fixed 0 ≤ α ≤ 1,

Dp,q (f (x) g (x)) = (αf (qx) + (1− α) f (px))Dp,qg (x) + (αg (px) + (1− α) g (qx))Dp,qf (x) .

If we choose α = 1, α = 0 and α = 1
2 , we then get the formulas (3), (4) and (7), respectively.

Let y = f (x) be an injective and surjective mapping. In this case, we have x = f−1 (y) where

f−1 is the inverse function of f . Applying (p, q)-derivative to each side of x = f−1 (y) gives

1 = Dp,qx = Dp,qf
−1 (y)

=
f−1 (y (px))− f−1 (y (qx))

y (px)− y (qx)
· y (px)− y (qx)

px− qx

= Dp,q;xf
−1 (y (x)) ·Dp,q;xy (x) ,

thus we arrive

Dp,q;xf
−1 (y (x)) =

1

Dp,q;xy
,

which is (p, q)-extension of the usual derivative of inverse function f−1.

As it has been given for q-derivative in [18], there doesn’t exist a general chain rule for (p, q)-

derivatives. That is, if we consider the function f(u(x)), where u = u(x) = λxµ with λ, µ being

constants, we have a chain rule as a special case:

Dp,q [ f(u(x))] = Dp,q [f (λxµ)] =
f(λxµpµ)− f(λxµqµ)

x(p− q)

=
f(λxµpµ)− f(λxµqµ)

λxµpµ − λxµqµ
.
λxµpµ − λxµqµ

x(p− q)

=
f(upµ)− f(uqµ)

upµ − uqµ
.
u(px)− u(qx)

x(p− q)
,

which gives

Dp,q f(u(x)) = (Dpµ,qµf) (u(x)).Dp,qu(x), (8)

that is (p, q)-extension of the Eq. (5) in [18].

Conversely, if we consider the function u(x) = x3 + x2 or u(x) = cosx, the quantity u(px)

and u(qx) can not be derived in terms of u in a basic way, and thereby it is impossible to write

a general chain rule.

As has been done for multiple q-calculus in [24], the case Dp,qϖ (x) = 0 for any function

is ϖ if and only if ϖ (px) = ϖ (qx) called (p, q)-periodic function. By choosing p = eln p and

x = elnx = ey we can write ϖ (x) = ϖ (ey) ≡ G (y) and

ϖ (px) = G (y + ln p) .

Using condition of (p, q)-periodicity of F (x), we get

G (y + ln p) = G (y + ln q) ,
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and if we denote y + ln p = z, then we realize

G (z) = G

(
z + ln

q

p

)
,

which implies that G (z) is a standart periodic function

G (z) = G (z + t) ,

with period t = ln q
p = ln q − ln p.

Applying k times the derivative operator Dp,q to (a⊖x)np,q successively yields to the following

proportion.

Proposition 2.1. Let n be a positive integer and 0 ≤ k ≤ n, we have

Dk
p,q

1

(x⊖ a)np,q
= (−1)k q

(
k
2

) [n+ k − 1]p,q!

[n− 1]p,q!

1

(qkx⊖ a)n+k
p,q

. (9)

Similarly, we get the following result.

Proposition 2.2. Let n ≥ 1 be an integer and 0 ≤ k ≤ n, we have

Dk
p,q

1

(a⊖ x)np,q
= p

(
k
2

) [n+ k − 1]p,q!

[n− 1]p,q!

1

(a⊖ pkx)n+k
p,q

. (10)

Now, we analyze some properties of the (p, q)-exponential functions. We observe that

e 1
p
, 1
q
(x) =

∞∑
n=0

1

[n] 1
p
, 1
q
!
p−
(
n
2

)
xn =

∞∑
n=0

1

[n]p,q!
q

(
n
2

)
xn,

thus, we get

e 1
p
, 1
q
(x) = Ep,q (x) . (11)

In the same way, we have

E 1
p
, 1
q
(x) = ep,q (x) . (12)

How about the additive property of the (p, q)-exponential functions? The answer is that the

(p, q)-exponential functions do not have any additive propertties. Indeed,

ep,q (x)Ep,q (y) =

( ∞∑
n=0

p

(
n
2

)
xn

[n]p,q!

)( ∞∑
n=0

q

(
n
2

)
yn

[n]p,q!

)

=

∞∑
n=0

(
n∑

k=0

[
n

k

]
p,q

p(
k
2)q(

n−k
2 )xkyn−k

)
1

[n]p,q!

=

∞∑
n=0

(x⊕ y)np,q
[n]p,q!

, (13)

which is not any form of (p, q)-exponential functions (ep,q (x) and Ep,q (x)).

We define a new type of (p, q)-exponential functions as

ẽp,q (x) =

∞∑
n=0

xn

[n]p,q!
. (14)

From Eqs. (13) and (14), we deduce

ep,q (x)Ep,q (y) = ẽp,q (x⊕ y)p,q ,
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which can be called addition formula for (p, q)-exponentials. Similar to the usual exponential

function ex =
∞∑
n=0

xn

n! and the q-exponential function eq (x) =
∞∑
n=0

xn

[n]q !
, (p, q)-exponential function

has the following derivative property

Dp,q ẽp,q (x) = ẽp,q (x) .

Note that (p, q)-Pascal rules are given by (cf. [10])[
n+ 1

k

]
p,q

= pk
[
n

k

]
p,q

+ qn−k+1

[
n

k − 1

]
p,q

, (15)

and [
n+ 1

k

]
p,q

= qk
[
n

k

]
p,q

+ pn−k+1

[
n

k − 1

]
p,q

. (16)

Here, we give a theorem about properties of the (p, q)-binomial coefficients.

Theorem 2.1. Each (p, q)-binomial coefficient is a polynomial including the parameters p

and q of degree k(n− k) whose leading coefficient is 1.

Proof. This theorem can be proved by the same method in the proof of Corollary 6.1. in [18]. �

Also, the coefficients in the polynomial expression of
[
n
k

]
p,q

are symmetric.

Note that the (p, q)-binomial coefficients also have combinatorial interpretations like q-binomial

coefficients and usual binomial coefficients.

Definition 2.1. [25] The function F (x) is a q-antiderivative of f(x) if Dp,qF (x) = f(x). It

is shown by ∫
f (x) dp,qx.

The following proposition is a (p, q)-generalization of the Proposition 18.1 in the book [18].

Proposition 2.3. Let 0 < q < p ≤ 1. Then, any function f(x) has at most one (p, q)-

antiderivative which is continuous at x = 0, up to adding a constant.

Proof. By using the similar proof’s technicals in [18] for q-antiderivative, this theorem can be

proved directly. �

Let us consider the following formula for the change of variable u = u (x) = λxµ with λ, µ being

constants. If F (x) is a (p, q)-antiderivative of f (x), then we have∫
f (u) dp,qu = F (u) = F (u (x)) .

Using the expression (8) we have for any p̂ and q̂

F (u (x)) =

∫
Dp̂,q̂F (u (x)) dp̂,q̂x

=

∫ (
Dp̂µ,q̂µF

)
(u(x)).Dp̂,q̂u(x)dp̂,q̂x

=

∫ (
Dp̂µ,q̂µF

)
(u (x)) dp̂,q̂u (x) .

If we take p̂ = p1/µ and q̂ = q1/µ, then we have Dp̂µ,q̂µF = Dp,qF = f , and hence∫
f (u) dp,qu =

∫
f (u (x)) dp1/µ,q1/µu (x) .

This formula implies that f (u (x))Dp1/µ,q1/µu (x) is one of the (p, q)-antiderivatives of f (x).
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The (p, q)-integral is defined (see [25]) by∫
f (x) dp,qx = (p− q)

∞∑
k=0

qkx

pk+1
f

(
qk

pk+1
x

)
.

Let f (x) =
∞∑
k=0

akx
k be a formal power series. Applying (p, q)-integral to the both sides of f (x)

yields to ∫
f (x) dp,qx =

∞∑
k=0

ak
xk+1

[k + 1]p,q
+ C,

where C is a constant.

Some simple examples of (p, q)-integral are

∫
(x⊕ y)np,q dp,qx =

(
x
p ⊕ y

)n+1

p,q

[n+ 1]p,q
+ C,∫

ẽp,q (x) dp,qx = ẽp,q (x) + C,∫
ep,q (x) dp,qx = ep,q

(
x

p

)
+ C,∫

Ep,q (x) dp,qx = Ep,q

(
x

q

)
+ C.

3. (p, q)-Trigonometric functions

The (p, q)-analogues of the sine, cosine, tangent and cotangent functions can be defined in

the same manner as their well known Euler expressions by means of the exponential functions.

Definition 3.1. Let i =
√
−1 ∈ C. Then two pairs of (p, q)-trigonometric functions are

defined by

sinp,q x :=
ep,q(ix)− ep,q(−ix)

2i
, Sinp,q x :=

Ep,q(ix)− Ep,q(−ix)

2i
,

cosp,q x :=
ep,q(ix) + ep,q(−ix)

2
, Cosp,q x :=

Ep,q(ix) + Ep,q(−ix)

2
,

tanp,q x :=
sinp,q x

cosp,q x
, Tanp,q x :=

Sinp,q x

Cosp,q x
,

cotp,q x :=
cosp,q x

sinp,q x
, Cotp,q x :=

Cosp,q x

Sinp,q x
.

(17)

Using the identity (17), we have

sinp,q x Sinp,qx = −ep,q(ix)Ep,q(ix) + ep,q(−ix)Ep,q(−ix)− 2

4
,

and

cosp,q x Cosp,qx =
ep,q(ix)Ep,q(ix) + ep,q(−ix)Ep,q(−ix) + 2

4
.

Thus, we derive the following formula

sinp,q x Sinp,qx+ cosp,q x Cosp,qx = 1,

which is the (p, q)-analogue of the well-known formula

sin2 x+ cos2 x = 1.
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By means of the (p, q)-trigonometric functions, the corresponding secant and cosecant func-

tions are described as

secp,q x :=
1

cosp,q x
, cscp,q x :=

1

sinp,q x
,

Secp,qx :=
1

Cosp,qx
, Cscp,qx :=

1

Sinp,qx
.

Note that the (p, q)-tangent and (p, q)-cotangent functions coincide the following equalities

tanp,q x = Tanp,qx and cotp,q x = Cotp,qx,

which are (p, q)-extension of the results in [9]. The two (p, q)-tangent functions are valid, how-

ever, one of these functions may be more useful than the other under special cases.

Now let us investigate (p, q)-derivatives of the (p, q)-trigonometric functions. By making use

of (3.1), we readily see that

Dp,q sinp,q x = Dp,q

(
ep,q(ix)− ep,q(−ix)

2i

)
=

Dp,qep,q(ix)−Dp,qep,q(−ix)

2i

=
ep,q(px) + ep,q(−px)

2
= cosp,q (px) .

By the same way, the others are stated as follows.

Theorem 3.1. The (p, q)-derivative operator fulfils the following equalities

Dp,q sinp,q x = cosp,q (px), Dp,qSinp,qx = Cosp,q (qx),

Dp,q cosp,q x = − sinp,q (px), Dp,qCosp,qx = −Sinp,q (qx),

Dp,q tanp,q x = 1 + tanp,q (px) tanp,q (qx), Dp,qTanp,qx = 1 + Tanp,q (px)Tanp,q (qx),

Dp,q cotp,q x = −
sin2p,q (px) + cos2p,q (px)

sinp,q (px) sinp,q (qx)
, Dp,qCotp,qx = −

Sin2p,q (qx) + Cos2p,q (qx)

Sinp,q (px)Sinp,q (qx)
,

Dp,q secp,q x = secp,q (qx) tanp,q (px), Dp,qSecp,qx = Secp,q (px)Tanp,q (qx),

Dp,q cscp,q x = − cscp,q (qx) cotp,q (px), Dp,qCscp,qx = −Cscp,q (px)Cotp,q (qx).

Now (p, q)-integration properties of the (p, q)-cosine and (p, q)-sine functions are given as

follows.

Theorem 3.2. The following (p, q)-integrals are verified by easy computations:∫
sinp,q xdp,qx = − cosp,q

(
x
p

)
+ C,∫

cosp,q xdp,qx = sinp,q

(
x
p

)
+ C,∫

Sinp,qxdp,qx = −Cosp,q

(
x
q

)
+ C,∫

Cosp,qxdp,qx = Sinp,q

(
x
q

)
+ C.

The (p, q)-exponential functions are related to the (p, q)-cosine and (p, q)-sine functions as

ep,q (ix) =

∞∑
n=0

p(
n
2)in

xn

[n]p,q!

=
∞∑
n=0

(−1)n

[2n]p,q!
p(2n−1)nx2n + i

∞∑
n=0

(−1)n

[2n+ 1]p,q!
p(2n+1)nx2n+1

= cosp,q (x) + i sinp,q (x) ,
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and

Ep,q (ix) =
∞∑
n=0

q(
n
2)in

xn

[n]p,q!

=
∞∑
n=0

(−1)n

[2n]p,q!
q(2n−1)nx2n + i

∞∑
n=0

(−1)n

[2n+ 1]p,q!
q(2n+1)nx2n+1

= Cosp,q (x) + iSinp,q (x) .

The following theorem includes a connection with (p, q)-sine and (p, q)-cosine functions.

Theorem 3.3. We have

sinp,q x Cosp,qx = cosp,q x Sinp,qx.

The (p, q)-analogues of hyperbolic functions can be defined in the same manner with their

well known Euler expressions by means of the exponential functions.

Definition 3.2. The (p, q)-hyperbolic functions are described as

sinhp,q x =
ep,q(x)− ep,q(−x)

2
, Sinhp,qx =

Ep,q(x)− Ep,q(−x)

2
,

coshp,q x =
ep,q(x) + ep,q(−x)

2
, Coshp,qx =

Ep,q(x) + Ep,q(−x)

2
,

tanhp,q x =
sinhp,q x

coshp,q x
, Tanhp,qx =

Sinhp,qx

Coshp,qx
,

cothp,q x =
coshp,q x

sinhp,q x
, Cothp,qx =

Coshp,qx

Sinhp,qx
.

(18)

The following relationhips hold true:

ep,q(x) = coshp,q x+ sinhp,q x, Ep,q(x) = Coshp,qx+ Sinhp,qx.

Using the identity (18), we have

sinhp,q x Sinhp,qx =
ep,q(x)Ep,q(x) + ep,q(−x)Ep,q(−x)− 2

4

and

coshp,q x Coshp,qx =
ep,q(x)Ep,q(x) + ep,q(−x)Ep,q(−x) + 2

4
.

Hence, we observe that

coshp,q x Coshp,qx− sinhp,q x Sinhp,qx = 1,

which is the (p, q)-analogue of the well known formula

cosh2 x− sinh2 x = 1.

Following the (p, q)-hyperbolic functions, the hyperbolic (p, q)-secant and (p, q)-cosecant func-

tions are defined by

sechp,qx :=
1

coshp,q x
, cschp,qx :=

1

sinhp,q x
,

Sechp,qx :=
1

Coshp,qx
, Cschp,qx :=

1

Sinhp,qx
.

The following theorem consists of the (p, q)-derivative properties of (p, q)-hyperbolic functions.
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Theorem 3.4. The (p, q)-derivative operator fulfils the following equations

Dp,q sinhp,q x = coshp,q (px), Dp,qSinhp,qx = Coshp,q (qx),

Dp,q coshp,q x = sinhp,q (px), Dp,qCoshp,qx = Sinhp,q (qx),

Dp,q tanhp,q x = 1− tanhp,q (px) tanhp,q (qx), Dp,qTanhp,qx = 1− Tanhp,q (px)Tanhp,q (qx),

Dp,q cothp,q x =
sinh2p,q (px)− cosh2p,q (px)

sinhp,q (px) sinhp,q (qx)
, Dp,qCothp,qx =

Sinh2p,q (qx)− Cosh2p,q (qx)

Sinhp,q (px)Sinhp,q (qx)
,

Dp,qsechp,qx = −sechp,q (qx) tanhp,q (px), Dp,qSechp,qx = −Sechp,q (px)Tanhp,q (qx),

Dp,qcschp,qx = −cschp,q (qx) cothp,q (px), Dp,qCschp,qx = −Cschp,q (px)Cothp,q (qx).

The following theorem includes the (p, q)-integral properties of (p, q)-hyperbolic functions.

Theorem 3.5. We have

∫
sinh p,q (x) dp,qx = cosh p,q

(
x
p

)
+ C,∫

cosh p,q (x) dp,qx = sinh p,q

(
x
p

)
+ C,∫

Sinhp,q (x) dp,qx = Coshp,q

(
x
q

)
+ C,∫

Coshp,q (x) dp,qx = Sinhp,q

(
x
q

)
+ C.

The (p, q)-exponential functions are related to the (p, q)- hyperbolic cosine and (p, q)- hyperolic

sine functions by

ep,q (x) =
∞∑
n=0

p(
n
2)

xn

[n]p,q!

=
∞∑
n=0

(−1)n

[2n]p,q!
p(2n−1)nx2n +

∞∑
n=0

(−1)n

[2n+ 1]p,q!
p(2n+1)nx2n+1

= coshp,q (x) + sinhp,q (x) ,

and

Ep,q (x) =
∞∑
n=0

q(
n
2)

xn

[n]p,q!

=

∞∑
n=0

(−1)n

[2n]p,q!
q(2n−1)nx2n +

∞∑
n=0

(−1)n

[2n+ 1]p,q!
q(2n+1)nx2n+1

= Coshp,qx+ Sinhp,qx.

Using the formulas (11) and (12), we obtain the following results.
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Theorem 3.6. The following identities are readily attested:

sin 1
p
, 1
q
x = Sinp,qx, Sin 1

p
, 1
q
x = sinp,q x,

cos 1
p
, 1
q
x = Cosp,qx, Cos 1

p
, 1
q
x = cosp,q x,

tan 1
p
, 1
q
x = Tanp,qx, Tan 1

p
, 1
q
x = tanp,q x,

cot 1
p
, 1
q
x = Cotp,qx, Cot 1

p
, 1
q
x = cotp,q x,

sec 1
p
, 1
q
x = Secp,qx, Sec 1

p
, 1
q
x = secp,q x,

csc 1
p
, 1
q
x = Cscp,qx, Csc 1

p
, 1
q
x = cscp,q x,

sinh 1
p
, 1
q
x = Sinhp,qx, Sinh 1

p
, 1
q
x = sinhp,q x,

cosh 1
p
, 1
q
x = Coshp,qx, Cosh 1

p
, 1
q
x = coshp,q x,

tanh 1
p
, 1
q
x = Tanhp,qx, Tanh 1

p
, 1
q
x = tanhp,q x,

coth 1
p
, 1
q
x = Cothp,qx, Coth 1

p
, 1
q
x = cothp,q x,

sech 1
p
, 1
q
x = Sechp,qx, Sech 1

p
, 1
q
x = sechp,qx,

csch 1
p
, 1
q
x = Cschp,qx, Csch 1

p
, 1
q
x = cschp,qx.

In terms of the new (p, q)-exponential function ẽp,qx, the corresponding trigonometric func-

tions can be defined as

s̃inp,qx :=
ẽp,q(ix)− ẽp,q(−ix)

2i
, t̃anp,qx :=

s̃inp,qx

c̃osp,qx
,

c̃osp,qx :=
ẽp,q(ix) + ẽp,q(−ix)

2
, c̃otp,qx :=

c̃osp,qx

s̃inp,qx
,

s̃ecp,qx =
1

c̃osp,qx
, c̃scp,qx =

1

s̃inp,qx
,

which satisfy

Dp,q s̃inp,qx = c̃osp,qx,

Dp,q c̃osp,qx = −s̃inp,qx,

Dp,q t̃anp,qx =
c̃osp,qx+ t̃anp,q (px) s̃inp,qx

c̃osp,q (qx)
,

Dp,q c̃otp,qx = − s̃inp,qx+ c̃otp,q (px) c̃osp,qx

s̃inp,q (qx)
,

Dp,q s̃ecp,qx =
s̃inp,qx

c̃osp,q (px) c̃osp,q (qx)
,

Dp,q c̃scp,qx = − c̃osp,qx

s̃inp,q (px) s̃inp,q (qx)
.

The (p, q)-exponential functions ẽp,qx are correlated with the new (p, q)-cosine and (p, q)-sine

functions as

ẽp,q (ix) =
∞∑
n=0

in
xn

[n]p,q!

=
∞∑
n=0

(−1)n

[2n]p,q!
x2n + i

∞∑
n=0

(−1)n

[2n+ 1]p,q!
x2n+1

= c̃osp,q (x) + is̃inp,q (x) .
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In terms of the new (p, q)-exponential functions ẽp,qx, the corresponding hyperbolic functions

are described as

s̃inhp,qx :=
ẽp,q(x)− ẽp,q(−x)

2
, t̃anhp,qx :=

s̃inhp,qx

c̃oshp,qx
,

c̃oshp,qx :=
ẽp,q(x) + ẽp,q(−x)

2
, c̃othp,qx :=

c̃oshp,qx

s̃inhp,qx
,

s̃echp,qx =
1

c̃oshp,qx
, c̃schp,qx =

1

s̃inhp,qx
,

which fulfil

Dp,q s̃inhp,qx = c̃oshp,qx,

Dp,q c̃oshp,qx = s̃inhp,qx,

Dp,q t̃anhp,qx =
c̃oshp,qx+ t̃anhp,q (px) s̃inhp,qx

c̃oshp,q (qx)
,

Dp,q c̃othp,qx = − s̃inhp,qx− c̃othp,q (px) c̃oshp,qx

s̃inhp,q (qx)
,

Dp,q s̃echp,qx = − s̃inhp,qx

c̃oshp,q (px) c̃oshp,q (qx)
,

Dp,q c̃schp,qx = − c̃oshp,qx

s̃inhp,q (px) s̃inhp,q (qx)
.

Theorem 3.7. The following (p, q)-integrals are valid:∫
s̃inp,qxdp,qx = −c̃osp,qx+ C,∫
c̃osp,qxdp,qx = s̃inp,qx+ C,∫

s̃inhp,qxdp,qx = c̃oshp,qx+ C,∫
c̃oshp,qxdp,qx = s̃inhp,qx+ C.

New (p, q)-trigonometric functions can be expressed by earlier defined (p, q)-trigonometric

functions as follows.

Theorem 3.8. The following equalities

s̃inp,q (x⊕ x)p,q = sinp,q x Cosp,qx+ cosp,q xSinp,qx,

s̃inp,q (x⊖ x)p,q = sinp,q x Cosp,qx− cosp,q xSinp,qx,

c̃osp,q (x⊕ x)p,q = cosp,q x Cosp,qx− sinp,q xSinp,qx,

c̃osp,q (x⊖ x)p,q = cosp,q x Cosp,qx+ sinp,q xSinp,qx,

sinhp,q (x⊕ x)p,q = sinhp,q xCoshp,qx+ coshp,q xSinhp,qx,

sinhp,q (x⊖ x)p,q = sinhp,q xCoshp,qx− coshp,q xSinhp,qx,

coshp,q (x⊕ x)p,q = coshp,q xCoshp,qx+ sinhp,q xSinhp,qx,

coshp,q (x⊖ x)p,q = coshp,q xCoshp,qx− sinhp,q xSinhp,qx

are true.

The following intriguing identities between (p, q)-trigonometric and (p, q)-hyperbolic functions

hold true.



U. DURAN et al.: A STUDY ON SOME NEW RESULTS ... 69

Theorem 3.9. We have

sinhp,q x = −i sinp,q(ix)

Sinhp,qx = −iSinp,q(ix)

s̃inhp,qx = −is̃inp,q(ix)

q → p = 1 sinhx = −i sin(ix),

coshp,q x = cosp,q (ix)

Coshp,qx = Cosp,q(ix)

c̃oshp,qx = c̃osp,q (ix)

q → p = 1 coshx = cos (ix),

tanhp,q x = −i tanp,q(ix)

Tanhp,qx = −iTanp,q(ix)

t̃anhp,qx = −it̃anp,q(ix)

q → p = 1 tanhx = −i tan(ix),

cothp,q x = i cotp,q(ix)

Cothp,qx = iCotp,q(ix)

c̃othp,qx = ic̃otp,q(ix)

q → p = 1 cothx = i cot(ix).

Here the (p, q)-trigonometric functions and the (p, q)-hypergeometric functions are examined

whether these functions are odd functions or even functions.

Theorem 3.10. We have

sinp,q (−x) = − sinp,q x, Sinp,q (−x) = −Sinp,qx, s̃inp,q (−x) = −s̃inp,qx,

cosp,q (−x) = cosp,q x, Cosp,q (−x) = Cosp,qx, c̃osp,q (−x) = c̃osp,qx,

tanp,q (−x) = − tanp,q x, Tanp,q (−x) = −Tanp,qx, t̃anp,q (−x) = −t̃anp,qx,

cotp,q (−x) = − cotp,q x, Cotp,q (−x) = −Cotp,qx, c̃otp,q (−x) = −c̃otp,qx,

secp,q (−x) = secp,q x, Secp,q (−x) = Secp,qx, s̃ecp,q (−x) = s̃ecp,qx,

cscp,q (−x) = − cscp,q x, Cscp,q (−x) = −Cscp,qx, c̃scp,q (−x) = −c̃scp,qx,

sinhp,q (−x) = − sinhp,q x, Sinhp,q (−x) = −Sinhp,qx, s̃inhp,q (−x) = −s̃inhp,qx,

coshp,q (−x) = coshp,q x, Coshp,q (−x) = Coshp,qx, c̃oshp,q (−x) = c̃oshp,qx,

tanhp,q (−x) = − tanhp,q x, Tanhp,q (−x) = −Tanhp,qx, t̃anhp,q (−x) = −t̃anhp,qx,

cothp,q (−x) = − cothp,q x, Cothp,q (−x) = −Cothp,qx, c̃othp,q (−x) = −c̃othp,qx,

sechp,q (−x) = sechp,qx, Sechp,q (−x) = Sechp,qx, s̃echp,q (−x) = s̃echp,qx,

cschp,q (−x) = −cschp,qx, Cschp,q (−x) = −Cschp,qx, c̃schp,q (−x) = −c̃schp,qx.

4. Conclusion

We have obtained some new results for post-quantum calculus, denoted by (p, q)-calculus.

Our study in content is as follows: a chain rule for (p, q)-derivative has been given, a new (p, q)-

analogue of the exponential functions has been introduced and some of its properties including

the addition property for (p, q )-exponential functions have been investigated. Several useful

results involving (p, q)binomial coefficients and (p, q)-anti-derivatives been discovered. Finally,

(p, q)-analogue of some elementary functions including trigonometric functions and hyperbolic

functions have been listed and some properties and relations among them have been mentioned.
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[9] Cieśliński, J.L., (2010), Improved q-exponential and q-trigonometric functions, arXiv:1006.5652v1 [math.CA].

[10] Corcino, R.B., (2008), On P,Q-Binomial coefficients , Electron. J. Combin. Number Theory, 8(2008).

[11] Duran, U., Acikgoz, M., Araci, S., (2016), On some polynomials derived from (p, q)-calculus, J. Comput.

Theor. Nanosci., 13(11), pp.7903-7908.

[12] Duran, U., Acikgoz, M., Araci, S., (2018), Research on some new results arising from multiple q-calculus,

Filomat, 32(1), pp.1-9.

[13] Duran, U., Acikgoz, M., Araci, S., (2016), On (p, q)-Bernoulli, (p, q)-Euler and (p, q)-Genocchi polynomials,

J. Comput. Theor. Nanosci., 13(11), pp.7833-7846.

[14] Ernst, T., (2000), The history of q-calculus and a new method, U.U.D.M. Department of Mathematics,

Uppsala University, Uppsala Report 2000.

[15] Jackson, F.H., (1910), On q-definite integrals, Quart J. Pure Appl. Math., 41, pp.193-203.

[16] Jagannathan, R., Rao, K.S., (2005), Two-parameter quantum algebras, twin-basic numbers, and associated

generalized hypergeometric series, in Proceeding of the International Conference on Number Theory and

Mathematical Physics, Srinivasa Ramanujan Centre, Kumbakonam, India, 20-21 December.

[17] Jagannathan, R., (1997), (P,Q)-Special functions, Special Functions and Differential Equations, Proceedings

of a Workshop held at The Institute of Mathematical Sciences, Matras, India, pp.13-24.

[18] Kac, V., Cheung, P., (2002), Quantum Calculus, New York: Springer.

[19] Kim, T., (2007), q-Extension of the Euler formula and trigonometric functions, Russ. J. Math. Phys., 14(3),

pp.275-278.

[20] Mursaleen, M., Ansari, K.J., Khan, A., (2015), On (p, q)-analogue of Bernstein operators, Appl. Math.

Comput., 266, pp.874-882.

[21] Mursaleen, M., Alotaibi, A., Ansari, KH., (2016), On a Kantorovich variant of (p, q)-Szász-Mirakjan opera-

tors, J. Funct. Spaces, Article ID 1035253, 9 pp.

[22] Mursaleen, M., Ansari, KJ., Khan, A., (2015), Some approximation results by (p, q)-analogue of Bernstein-

Stancu operators, Appl. Math. Comput., 264, pp.392-402.

[23] Mursaleen, M., Nasiuzzaman, M., Nurgali, A., (2015), Some approximation results on Bernstein-Schurer

operators defined by (p, q)-integers, J. Inequal. Appl., Article ID 249, 12 pp.

[24] Nalci, S., Nalci, O.K., (2014), Exactly Solvable q-Extended Nonlinear Classical and Quantum Models, Lam-

bert Academic Publishing, 272 pp.

[25] Sadjang, P.N., (2013), On the fundamental theorem of (p, q)-calculus and some (p, q)-Taylor formulas,

arXiv:1309.3934 [math.QA].

[26] Sadjang, P.N., (2015), On the (p, q)-Gamma and the (p, q)-Beta functions, arXiv 1506.07394v1 [math.QA].

[27] Srivastava, H.M., Pinter, A., (2004), Remarks on some relationships between the bernoulli and euler polyno-

mails, Appl. Math. Lett., 17, pp.375-380.

[28] Wachs, M., White, D., (1991), (p, q)-Stirling numbers and set partition statistics, J. Combin. Theory Ser, A.

56(1), pp.27-46.



U. DURAN et al.: A STUDY ON SOME NEW RESULTS ... 71

Ugur Duran - was born in Gaziantep, Turkey, in

1993. His research interests include p-adic anal-

ysis, theory of analytic numbers, q-series and q-

polynomials, p-adic analysis, and theory of um-

bral calculus. He currently works as a lecturer at

Iskenderun Technical University, Hatay, Turkey.

Mehmet Acikgoz - received M. Sc. And Ph.

D. degrees from Cukurova University, Turkey.

He is currently a Full Professor at University of

Gaziantep. His research interests are approxima-

tion theory, functional analysis, p-adic analysis

and analytic numbers theory.

Serkan Araci - was born in Hatay, Turkey, in

1988. His research interests include p-adic anal-

ysis, theory of analytic numbers, q-series and q-

polynomials, p-adic analysis, and theory of umbral

calculus. Currently, he works as an Assistant Pro-

fessor at Hasan Kalyoncu University, Gaziantep,

Turkey.


